雷英/雷永鹏:生物质转化合成Fe单原子-Fe2O3团簇及其ORR性能

  • A+
第一作者:雷英;杨富文     

通讯作者:雷英;雷永鹏     
通讯单位:四川轻化工大学;中南大学   
论文DOI10.1039/D0TA06022D
 
全文速览


本文以螺旋藻为Fe源,与g-C3N4热解合成了Fe单原子位点(Fe-N4)Fe2O3团簇(FeSA/FeONC/NSC),并研究了其催化氧还原反应(ORR)性能。研究表明,均匀分布的Fe-N-C位点与Fe2O3团簇的耦合作用使催化剂具有优异的ORR活性(E1/2=0.86 V vs RHEJk, 0.8V =32.15 mA cm-2)以及良好的抗甲醇性和稳定性。组装的锌-空气电池功率密度为179.0 mW cm-2,能量密度为837.4 Wh kg-1,可与商用Pt/C催化剂媲美。

背景介绍


ORR是燃料电池和金属-空气电池涉及的重要反应。然而,ORR缓慢的动力学导致了高的阴极过电位,迫切需要发展高效电催化剂来加速反应速率。金属--(M-N-C)单原子催化剂Fe-N-C等,金属位点处于原子级分散,具有极高的原子利用效率。然而,在ORR过程中,由于O2在单原子位点上的吸附模式(侧面或末端模式)限制了O-O键解离,不利于其直接的四电子转移过程。研究发现,一些含有双/多原子金属核的多原子催化剂(如Fe-Co双核位点、Co2N5位点)具有比单原子更强的O2吸附能力,可以有效降低O-O键的能垒,可实现比单原子位点具有更高的ORR活性,对四电子还原路径具有更高的选择性。发展多原子中心的金属小团簇结构或者向单原子位点中引入超小的金属团簇有望改善单原子催化剂的催化活性。
最近,四川轻化工大学雷英博士与中南大学雷永鹏教授合作,利用生物质(螺旋藻)内均匀分布的铁,通过小分子氮源介导共热解策略,原位转化得到了嵌入NS共掺杂多孔碳的铁单原子位点与Fe2O3团簇(仅几个Fe原子中心)共存的催化剂(FeSA/FeONC/ NSC)。由于与超小的Fe2O3团簇的耦合作用,同时超薄的NS共掺杂的多孔碳骨架提供的有利的反应场所,催化剂表现出与Pt/C相媲美的ORR活性和良好的催化稳定性。

本文亮点


1. 生物质直接原位转化得到富含铁单原子位点和Fe2O3团簇的NS共掺杂多孔碳 (FeSA/FeONC/NSC)
2. FeSA/FeONC/NSC显示半波电位为0.86 V vs. RHE,优于商用Pt/C催化剂(0.85 V vs. RHE)
3. FeSA/FeONC/NSC作为空气电极组装的锌-空气电池可达179.0 mW cm-2
4. 嵌入于N, S-介导的碳层中原子水平分散Fe-N-C位点与Fe2O3团簇的共同作用是导致其高ORR活性的主要原因
图文解析


1. 碳化的螺旋藻(CS)FeSA/FeONC/NSC(a) XRD图谱和(b)拉曼光谱,(c) FeSA/FeONC/NSCTEM图像(内插图为其HRTEM图像)(d, e)HAADF-STEM图像 (红、绿两圈分别表示单个Fe原子和Fe2O3团簇)(f) STEM图像和相应EDS元素映射图像(红色表示Fe、蓝色表示N、黄色表示S)
 
要点FeSA/FeONC/NSC富含边缺陷的超薄多孔结构,不仅为ORR反应提供了有利场所,而且其边缺陷位点还有助于增强ORR活性。HAADF-STEM图表明结构中同时存在Fe单原子(红色圈)和小的金属团簇(绿色圈)。NS共掺杂易于导致碳基体中电荷非均匀分布,更有利于吸附O2和增强ORR活性。
 

2 (a) 高分辨率N 1s; (b) Fe K-X射线吸收近边结构谱(XANES)FeK-k3-加权傅里叶变换(FT);(d)小波变换;(e)其相应的扩展X射线吸收精细结构(EXAFS) R空间拟合曲线和(f) 57Fe穆斯堡尔谱。

要点: FeSA/FeONC/NSCXANES谱在~7113 eV处的弱峰(2b),表明Fe原子以四面体配位构型为主。傅里叶变换(FT)谱(图2c):1.5Å处峰归因于Fe-N(O)散射,而2.0~3.0 Å处的宽峰对应于Fe-Fe结构和 Fe2O3,而超过4.0 Å以后未出现峰,说明Fe2O3团簇非常小。小波变换(WT)中,其最大值出现在k~5.0 Å-1(介于Fe-Nx结构的4.8 Å-1Fe2O35.3 Å-1之间),说明其可能同时含有Fe-NxFe2O3纳米团簇。EXAFSR空间拟合曲线和样品的57Fe穆斯堡尔谱进一步证实了结构中Fe-NxFe2O3纳米团簇共存。

3 (a) 扫描速率为50 mV s-1时的CV曲线和(b)O2饱和0.1 M KOH溶液中的LSV曲线(10 mV s-1,转速为1600 rpm) (c)催化剂在0.80 V时对应的EonsetE1/2Jk; (d)FeSA/FeONC/NSC在不同转速下的LSV曲线(插图为K-L);(e)O2饱和的0.1M KOH溶液中,所有催化剂在RRDE上的LSV曲线 (10 mV s-1, 1600 rpm); (f) 基于RRDE测试得到的FeSA/FeONC/NSC的测试的电子转移数(n)和过氧化氢产率。
 
要点:从CV曲线可见,FeSA/FeONC/NSCORR峰位置与Pt/C的十分接近,显示出与Pt/C催化剂相当的ORR活性。LSV结果表明,FeSA/FeONC/NSC具有高的Eonset (0.99V vs RHE)E1/2(0.86 V vs RHE),优于20% Pt/C (Eonset=0.98 V; E1/2=0.85V vs RHE) (图3b);并且具有高的催化动力学电流密度Jk 0.80V(32.15 mA cm-2),约为Pt/C催化剂(16.5 mA cm-2)的两倍(图3 c)。
 

4 (a) 两个串联的自制锌-空气电池(开路电压值为2.98 V),其可以点亮绿色LED灯;(b)-空气电池放电极化曲线及功率密度曲线;(c)10 mA cm−2电流密度下的能量密度曲线;(d) 恒电流放电稳定性曲线(10 mA cm−2)
 
要点4a展示了以FeSA/FeONC/NSC为空气阴极构建的锌-空气电池,两个电池串联开路电压可达到2.98 V。该锌-空气电池可以实现极高的峰值功率密度(179.0 mW cm-2)和能量密度(837.4 Wh kg-1)。另外,恒电流放电15 h后,其电压未出现明显下降(图4d),表明其具有良好的催化稳定性。

总结与展望


本工作通过热解生物质原位转化合成了Fe单原子位点与Fe2O3团簇耦合的电催化剂,该催化剂对ORR反应显示出了与Pt/C相媲美的高催化活性。这主要得益于铁单原子位点与纳米团簇结构的耦合作用;同时超薄的NS共掺杂多孔碳为ORR过程提供了有利反应场所和部分ORR活性位点。本研究直接从生物质原位转化得到金属单原子与Fe2O3团簇耦合的高效催化剂,为设计合成新型非贵金属电催化剂提供了启示。
 
作者介绍


雷永鹏,博士,中南大学粉末冶金国家重点实验室特聘教授,先后主持国家自然科学基金、湖南省自然科学基金等项目。中国空间科学学会空间材料专业委员会委员、Journal ofMaterials Science & Technology编委、Chinese Chemical Letters青年编委、MaterialsLetters编委、Journal of Advanced Ceramics助理编委、《中南大学学报(英文版)》《中南大学学报(自然科学版)》青年编委、《物理化学学报》青年编委、Rare Metals青年编委。合作指导全军优秀硕士学位论文2篇,芙蓉学子·榜样力量优秀大学生1人,向上向善湖南好青年”1人。获授权国家发明专利6项,以一作/通讯作者在Energy & Environmental Science2篇)、Angewandte Chemie International Edition2篇)、Advanced Functional MaterialsACS NanoACS Energy LettersScience BulletinSmall等期刊发表SCI论文60余篇。是Advanced Materials40余种国际SCI期刊的审稿人。
主页:
http://faculty.csu.edu.cn/leiyongpeng/zh_CN/index.htm

主要研究方向为聚合物先驱体(纤维)转化制备非氧化物陶瓷(SiCBN等)、清洁能源催化材料及器件(光电能源催化、金属空气电池等)等,近年部分科研进展如下:
[1Lei, Y.*;Dai L.*; Wang P* et al. Advanced Functional Materials, 2020, 2000593
[2] Lei, Y.*;Duan, X.*; Wang, D.* et al. Energy Environ. Sci., 2020,13, 1593-1616.
[3] Lei,Y.* et al.Angew. Chem. Int. Ed., 2020,10.1002/anie.201914647.
[4] Lei,Y.*; Feng, Y.* etal. Small, 2020, 16, 2001571.
[5] Lei,Y.*; Zhou, G.*; Wang, D.*; Li, Y.* etal. Angew. Chem. Int. Ed., 2020,59, 1295-1301. ESI高被引论文)
<span style="line-height: 150%;color: black;letter-spacing: 0.


weinxin
我的微信
关注我了解更多内容

发表评论

目前评论:0